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Abstract. We compute the width and shape of the EPR and tunneling resonances due to dislocations in
Mn12 acetate crystals. Uncorrelated dislocations produce the Gaussian shape of resonances while disloca-
tions bound in pairs produce the Lorentzian shape. We stress that the uniaxial spin Hamiltonian together
with crystal defects can explain the totality of experimental data on Mn12.

PACS. 75.45.+j Macroscopic quantum phenomena in magnetic systems – 75.50.Tt Fine-particle systems;
nanocrystalline materials

The discovery of resonant spin tunneling in Mn12 ac-
etate [1,2] has triggered an avalanch of theoretical and ex-
perimental works on molecular nanomagnets (see Ref. [3]
for references). Despite of a significant progress made in
understanding Mn12 and later discovered Fe8 spin-10 sys-
tems, a number of key questions remains unanswered. One
of them is the width and shape of the tunneling resonance.
Recently, we have suggested that quantum magnetic relax-
ation in molecular nanomagnets can be explained by dis-
locations in the crystal lattice [3,4]. Recent experimental
works give evidence of the effect of defects on tunneling
and EPR in single crystals of Mn12 and Fe8 [5–7,9–12],
in accordance with our suggestions (see also Ref. [8] on
EPR in Mn12). The analysis of these experiments requires
computation of the width and shape of EPR and tunnel-
ing resonances due to dislocations, which is done in this
paper. We argue that dislocations at common concentra-
tions provide the observed width of tunneling resonances
and the observed width of the EPR in Mn12 and Fe8.

Qualitatively, the importance of dislocations is clear
from the fact that they give rise to long-ranged elastic
strains which modulate crystal fields and thus create spa-
tial dependence of the magnetic anisotropy. In spin tunnel-
ing and EPR experiments the resonant values of the mag-
netic field are determined by the anisotropy constants. For
Mn12 crystals in the field parallel to the easy axis, with the
Hamiltonian H = −DS2

z − HzSz + H′ (H′ being a small
tunneling term), the resonant spin tunneling occurs at

Hz = kD, k = 0,±1,±2, . . . ,±(2S − 1), (1)

a e-mail: garanin@uni-mainz.de

while the EPR between the levels m and m − 1 at fre-
quency ω occurs at

Hz = ω − D(2m − 1). (2)

In our two recent works [3,4] we computed H′ due to dis-
locations and neglected the effect of dislocations on the
resonance condition. Meantime, the spatial dependence of
the magnetic anisotropy D due to dislocations causes res-
onances to spread over a certain field range. This range
depends on the magnetoelastic coupling, the type, and
concentration of dislocations.

The terms in the magnetoelastic coupling that are re-
sponsible for the modulation of the uniaxial anisotropy
constant D can be written as

Hme = −D′S2
z , D′ = D[g0(εxx + εyy) − g′0εzz], (3)

where

εαβ =
1
2

(
∂uα

∂xβ
+

∂uβ

∂xα

)
(4)

is the linear deformation tensor and α, β = x, y, z. The
coupling constants g0 and g′0 must be of order one, see
reference [13] and references therein. For illustrations, we
will use g0 = g′0 = 1.

For screw dislocations, one has εxx = εyy = εzz = 0 so
this type of dislocations does not contribute into the EPR
and tunneling resonance linewidths. For edge dislocations
with the axis along the z axis of the crystal and the extra
plane z, y inserted at y > 0 (see Fig. 1) one has uz = 0,
whereas other displacement components are given by [14]

ux =
b

2π

[
arctan

y

x
+

1
2(1 − σ)

xy

x2 + y2

]
(5)
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Fig. 1. (a): Edge dislocation running along the y axis with the
extra plane y, z inserted at z > 0; (b): The magnitude of the
dislocation-induced contribution into the uniaxial anisotropy
constant D.

and

uy = − b

2π

[
1 − 2σ

4(1 − σ)
ln(x2 + y2) +

1
2(1 − σ)

x2

x2 + y2

]
,

(6)

where b is the Burgers vector coinciding with the lattice
period and 0 < σ < 1/2 is the Poisson elastic coefficient
(we will use σ = 0.25 in the numerical work). The relevant
components of the deformation tensor are εzz = 0 and

εxx + εyy = − b(1 − 2σ)
2π(1 − σ)

y

x2 + y2
· (7)

Displacements due to other types of edge dislocations
can be obtained from equations (5, 6) by the change of
variables. In particular, for edge dislocations with the axis
along the y axis of the crystal and the extra plane z, y
inserted at z > 0 one should make a replacement y ⇒ z.
This yields εyy = 0,

εxx = − b

4π(1 − σ)
z
(3 − 2σ)x2 + (1 − 2σ)z2

(x2 + z2)2
, (8)

and

εzz = − b

4π(1 − σ)
z
(1 + 2σ)x2 − (1 − 2σ)z2

(x2 + z2)2
· (9)

Generally, the axis of an edge dislocation can be di-
rected along the x, y, and z axes of the crystal, and in

each of these cases there are four possible orientations of
the extra crystallographic plane. One can write

D′ = D
gD(ϕ)

r
· (10)

Here r is the distance from the dislocation axis, mea-
sured in the lattice units, whereas gD(ϕ) is a function
of the angle which is of order one if g0 ∼ g′0 ∼ 1. One
can immediately see from equation (10) that the con-
tribution of dislocations in the EPR and tunneling res-
onance linewidth must be large. Indeed, for r ∼ 1 one has
D′ ∼ D, whereas the spatial decay of D′ is slow, so that
each dislocation affects a large number of molecules in the
crystal thus rendering each molecule a different value of
the uniaxial anisotropy. This leads to a substantial inho-
mogeneous broadening of resonances which follows from
equations (1, 2).

In a crystal with dislocations, the deformation tensor
at any given point is a sum of contributions due to many
different dislocations. The superposition principle for de-
formations follows from the linearity of the equations of
the theory of elasticity [14] and it holds everywhere out-
side dislocation cores, i.e., for the distances from the dis-
location axes r & 1. Statistical properties of deformations
in a crystal depend on the spatial distribution of disloca-
tions which is poorly known. Let us find analytically the
distribution of the anisotropy constant D assuming that
dislocations are distributed at random. The distribution
function for D′ in equation (3) can be defined as

fD̃′ =

〈
δ

(
D̃′ −

N∑
i=1

D̃′(r − ri)

)〉
, D̃′ ≡ D′

D
, (11)

where N � 1 is the number of dislocations in the crystal
and the averaging is carried out over their positions ri

in the plane perpendicular to the dislocation axis within
a circular region of radius R. We choose the observation
point in the middle of the crystal, r = 0. One can define

c =
N

πR2
=

1
πR2

c

, (12)

where c is the concentration of dislocations and Rc is the
characteristic distance between dislocations.

Let us at first analyze the large-|D̃′| asymptotes of fD̃′
due to the regions with large deformations of both signs
close to one of dislocations. In that case one can neglect
the influence of all other dislocations and consider the one-
dislocation model

fD̃′ =
1

πR2
c

∫ 2π

0

dϕ

∫ Rc

0

rdrδ

(
D̃′ − gD(ϕ)

r

)
· (13)

Integration yields

fD̃′ =
(D̃′

c)
2

|D̃′|3 , |D̃′| & D̃′
c ≡

√〈gD(ϕ)2〉
Rc

, (14)

where D′
c is the characteristic value of D′ at the distance

Rc and 〈. . . 〉 is the angular average. This formula becomes
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invalid for D̃′ . D̃′
c, where the lines of constant D̃′ in equa-

tion (13) cross the boundary of the region under consider-
ation, r = Rc. In fact, for D̃′ . D̃′

c equation (13) becomes
invalid and one has to take into account other disloca-
tions. Equation (14) suggests that one should introduce
the distribution function for the reduced quantity α

fα ≡ D̃′
cfD̃′ , α ≡ D̃′/D̃′

c, (15)

which has the asymptote

fα = 1/|α|3, α & 1. (16)

In the general case, with the help of the identity
2πδ(x) =

∫∞
−∞ dωeiωx, the averaging over the coordinates

of different dislocations in equation (11) can be factorized,

fD̃′ =
∫ ∞

−∞

dω

2π
eiωD̃′

f(ω)N , (17)

where

f(ω) ≡ 1
πR2

∫ 2π

0

dϕ

∫ R

0

rdr exp
(
− iωgD(ϕ)

r

)
· (18)

In equation (11) we assumed for simplicity that all dislo-
cations are of the same type.

As we shall see, in equations (17, 18), ω ∼ Rc � R
for N � 1, thus the argument of the exponential in equa-
tion (18) is small and f(ω) is close to unity. Then the expo-
nential can be expanded and integrated, with a log accu-
racy, in the interval |ω| . r < R. Given that 〈gD(ϕ)〉 = 0,
the result has the form

f(ω) ∼= 1 − ω2〈gD(ϕ)2〉
R2

ln
c0R

|ω|√〈gD(ϕ)2〉 , (19)

where c0 is a constant of order unity. Now with the use of
equations (12, 14) one can write

f(ω)N ∼= 1 − ω2〈gD(ϕ)2〉
R2

c

ln
c0R

|ω|√〈gD(ϕ)2〉

∼= exp

[
−(ωD̃′

c)
2 ln

c0

√
N

|ω|D̃′
c

]
· (20)

At this point one may forget about the initial assumption
on the circular form of the spatial region. The shape of the
crystal only affects the value of the constant c0 under the
logarithm. Equation (20) confirms the assumption ω ∼
1/D̃′

c ∼ Rc made above. Now we are prepared to write
down the final result which is convenient to formulate in
terms of the function fα defined by equation (15)

fα
∼= 1

π

∫ Λ

0

du cos(αu) exp

(
−u2 ln

c0

√
N

u

)
· (21)

Here the cutoff Λ satisfies 1 � Λ � √
N ; one cannot in-

tegrate up to ∞ since the form if the integrand is only
valid for u � √

N . Clearly, for large enough crystals with
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Fig. 2. Distribution of the uniaxial anisotropy due to a ran-
dom array of edge dislocations.

N � 1 the result does not depend on Λ. We remind that
for the edge dislocations along the Y -axis, the distribu-
tion of transverse anisotropies is an even function. The
distribution is shown for D̃′ > 0 in Figure 2.

Integrating equation (21) by parts three times, one can
recover the asymptote of fα at |α| � 1 which is given by
equation (16). This power-law asymptote is a consequence
of the logarithmic singularity of the integrand in equa-
tion (21) at u → 0 and it leads to the divergence of the
second moment of fα. On the other hand, for large N the
distribution function may be well approximated by Gaus-
sian for not too large α. Indeed, for large N the logarithm
in equation (21) is weakly dependent on u and can be re-
placed by a constant. The best value of this constant cor-
responds to u for which the argument of the exponential
equals one. This requires solving a transcendental equa-
tion that can be done in a perturbative way. With a good
accuracy one can use

ln
c0

√
N

u
⇒ L = ln

[
c0

√
N ln(c0

√
N)
]

(22)

which results in the approximation

fα
∼= 1

2
√

πL
exp

(
−α2

4L

)
(23)

which is also shown in Figure 2.
As the number N of dislocations in the crystal in-

creases, the function fα of equation (21) becomes closer
and closer to the Gaussian, whereas the power-law asymp-
tote given by equation (16) becomes shifted to the region
of very large α where it is hardly visible. This effect is
due to the accumulation of small contributions from dis-
locations situated at large distances from the observation
point (of order of the linear dimension of the crystal).
Such small contributions from distant dislocations, which
lead to the Gaussian distribution fα, win over contribu-
tions from close dislocations responsible for equation (16).
Gaussian approximation for the function fD̃′ with the help
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of equation (15) can be written in the form

fD̃′ ∼= 1
2D̃′

c̃

√
π

exp

(
− D̃′2

(2D̃′
c̃)2

)
, (24)

where

D̃′
c̃ ≡ D̃′

c

√
L =

√
π〈g(ϕ)2〉c̃, c̃ ≡ cL. (25)

The standard deviation of D̃′ according to equation (24)
is σD̃′ =

√
2D̃′

c̃. One can see that the accumulation of con-
tributions from distant dislocations leads to the effective
logarithmic renormalization of the concentration of dislo-
cations c with L defined by equation (22). For edge dislo-
cations running along the z-axis, the quantity

√〈gD(ϕ)2〉
is given by √

〈gD(ϕ)2〉 =
g0

2
√

2π
1 − 2σ

1 − σ
, (26)

where σ is the Poisson elastic coefficient. For for g0 = 1
and σ = 0.25 one has

√〈gD(ϕ)2〉 ≈ 0.075. For edge dislo-
cations running perpendicular to the z-axis one obtains

√
〈gD(ϕ)2〉 =

1
8π(1 − σ)

[
8σ2(g0 − g′0)

2

−4σ(g0 − g′0)(3g0 − g′0) + 5g2
0 − 2g0g

′
0 + (g′0)

2
]1/2

(27)

which for g0 = g′0 simplifies to
√〈gD(ϕ)2〉 = g0/[4π(1 −

σ)]. For g0 = 1 and σ = 0.25 one has
√〈gD(ϕ)2〉 ≈ 0.106.

The experimentally studied Mn12 crystals are rather
large, about 0.5×0.5 mm2, which corresponds to the cross-
section of about 1011 lattice cells. Even for the concentra-
tion of dislocations as small as c = 10−4 per cell, the
number of dislocation in the crystal is about N ≈ 107.
For c0 = 1 this gives L = 9.1, i.e., the effective concen-
tration of dislocations increases by an order of magnitude,
c̃ = 0.91 × 10−3. The corresponding value of D̃′

c̃ that fol-
lows from equations (25, 27) for the edge dislocations run-
ning perpendicular to the z axis is D̃′

c̃ = 0.567×10−2. For
c = 10−3 one obtains L = 10.3, thus D̃′

c̃ = 1.91 × 10−2.
The renormalization of the concentration of dislocations
and the Gaussian distribution of transverse anisotropies
for large crystals are clearly seen in Figure 2: The dis-
tribution broadens in the α-scale due to the increase L
with N , equation (22).

The dislocation mechanism proposed in this paper can
qualitatively explain the experimentally observed tunnel-
ing [15] and EPR [5,6] linewidths in Mn12 Ac. For the
realistic concentrations of dislocations c = 10−3 the stan-
dard deviation σD̃′ =

√
2D̃′

c̃ ≈ 0.027 is in accord with the
fit σD = 0.02D of reference [6].

Now we consider another model of distribution of dislo-
cations in the crystal: Dislocations of opposite signs bound
into pairs at the distance d. Distributions of this kind are
more likely than a completely random distribution since
here the energy of elastic strains is lower. At the distances
r � d from equation (10) one obtains

D′ = −D
d

r2
A(ϕ), A(ϕ) ≡ ∂

∂ϕ
[gD(ϕ) sin ϕ], (28)

where ϕ is the angle between the vectors r and d. The
calculations following after equation (11) should be now
redone with D′ given by equation (28) and the parame-
ters N , c, and Rc designating the number, concentration,
and the average distance between the dislocation pairs.
For d � Rc � R the characteristic values of ω and r
are ω ∼ R2

c/l and r ∼ √
ωl ∼ Rc. The function f(ω) in

equation (17) then reads

f(ω) ∼= 1 − 1
πR2

∫ 2π

0

dϕ

∫ ∞

0

rdr

[
1 − cos

(
ωd

r2
A(ϕ)

)]

= 1 − πl|ω|
2R2

〈|A(ϕ)|〉· (29)

This results in

f(ω)N ∼= 1 − πl|ω|
2R2

c

〈|A(ϕ)|〉 ∼= exp
(
−πl|ω|

2R2
c

〈|A(ϕ)|〉
)

.

(30)

Finally, equation (17) yields

fD̃′ ∼= 1
π

D̃′
c

(D̃′)2 + (D̃′
c)2

(31)

with

D̃′
c ≡

πl

2R2
c

〈|A(ϕ)|〉 =
π2cl

2
〈|A(ϕ)|〉 · (32)

In contrast to the random-dislocation model which is
characterized by Gaussian fluctuations of the uniaxial
anisotropy D, here the distribution of D is Lorentzian
and its reduced width D̃′

c is by a factor l/Rc � 1
smaller than that of equation (14). The asymptote fD̃′ ∼=
(1/π)D̃′

c/(D̃′)2 at D̃′ � D̃′
c is due to a single disloca-

tion pair, as can be checked by an independent calculation
similar to that for random dislocations (cf. Eq. (14)). For
edge dislocations running perpendicular to the z-axis and
g0 = g′0, one has 〈|A(ϕ)|〉 = 33/2g0/[4π2(1 − σ)], which
for g0 = 1 and σ = 0.25 yields 〈|A(ϕ)|〉 ≈ 0.175. For the
concentration of dislocations c = 10−3 the average dis-
tance between dislocations is according to equation (12)
Rc ≈ 17.8, in lattice units. For the size of the dislocation
pair l = 5 which satisfies the applicability condition l . Rc

of equation (31) one obtains the reduced width of the dis-
tribution of the anisotropy constant D̃′

c ≈ 4.3×10−3 which
is expectedly smaller than that for randomly distributed
single dislocations.

If the distance between dislocations in a dislocation
pair l is comparable with the average distance between
dislocations Rc, the distribution of D will be neither Gaus-
sian nor Lorentzian. It still can be obtained numerically
by the method described above. A more realistic model
should include distribution of the dislocation-pair length l.
We do not attempt to consider these more complicated
models here since too little is known about the disloca-
tions and their interaction in Mn12 and other molecular
magnets. More detailed experimental investigation of the
tunneling resonance and EPR lineshapes, as well as X-ray
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scattering investigations, are needed to elucidate the dis-
tribution of dislocations in these materials. Still, the first
results reported on in this paper show that dislocations
at reasonable concentrations can be made responsible for
the experimentally observed linewidths in Mn12.

This work has been supported by the NSF Grant No. 9978882.
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